Model 3966 & Model 3986
IT Series
Flame Detector Module

APPLICABILITY & EFFECTIVITY
Effective for all Model 3966 & Model 3986 modules manufactured after November 2018.
Table of Contents

Appendix A. Maintenance and Troubleshooting
- Appendix A.1. Clearing Procedure .. 20
- Appendix A.2. Troubleshooting ... 20
- Appendix A.3. New Installations ... 21
- Appendix A.4. Failure to Alarm ... 21
- Appendix A.5. RS-485 User Interface (UI) .. 21

Appendix B. Specifications
- Appendix B.1. Environmental (All Models) 22
- Appendix B.2. Electrical Interface .. 22
- Appendix B.3. Mechanical Specification ... 23
- Appendix B.4. Optional Accessories ... 23
- Appendix B.5. Ordering Information ... 24

Appendix C. Service and Repair .. 25

Appendix D. Warranty ... 25
LIST OF FIGURES

Figure 1: 3966/3986 Horizontal Field of View ... 7
Figure 2: 3966/3986 Vertical Field of View ... 7
Figure 3: Typical Hydrocarbon Fire Spectrum ... 8
Figure 4: 3966-0xxxx & 3986-xxxxx Location of User Selectable Options 11
Figure 5: Switch Configurations for the 3986-xxxx ... 12
Figure 6: Switch Configurations for the 3966-0xxxx ... 12
Figure 7: 3966-1xxxx Location of User Selectable Options .. 13
Figure 8: Switch Configurations for the 3966-1xxxx ... 13
Figure 9: Model 3966 Sensitivity Settings ... 14
Figure 10: Milliamp Logic Chart ... 16
Figure 11: Message Status for RS-485 UI ... 17
Figure 12: Control Packet Definition for RS-485 UI .. 18
Figure 13: Response Packet Definition for RS-485 UI .. 18
Figure 14: Binary Weight for Switch States “ON” .. 19
Figure 15: Optical Surfaces ... 20
Figure 16: Maximum Current Draw ... 22
Figure 17: Maximum Power Consumption .. 22
Figure 18: 3966/3986 Mechanical Dimensions .. 23
Figure 19: Swivel Mount Installation .. 23
CAUTION!

Electrostatic Discharge:

A discharge of static electricity from an ungrounded source, including the human body, may damage the electronic circuitry of the Sierra Monitor Model 3966 and 3986 Flame Detectors. Use one or more of the following methods when handling or installing electrostatic sensitive parts:

- A wrist strap connected by a ground cord to an earth ground source
- Heel straps, toe straps, or boot straps at standing workstations
- Conductive field service tools
- A portable field service kit with a static-dissipating work mat
1 PRODUCT DESCRIPTION

1.1 General

The Sierra Monitor model 3966 and 3986 flame detectors are optically based, self-contained, microprocessor controlled, ultraviolet/infrared (UV/IR) and high-speed ultraviolet (UV) flame detectors. The 3986 flame detector utilizes fire event analysis discrimination technology. These Flame Detectors are compatible with most alarm panels without the need for a controller. All electronics are housed within a copper-free aluminum, high temperature, TGIC-Polyester coated enclosure with a 3/4-14NPT or M20-1.5 conduit entry. A stainless steel enclosure is also available.

The 3966 and 3986 Flame Detectors are suitable for use in Class I, Division 1, Groups B, C and D (explosion-proof) areas and Class II, Division 1, Groups E, F, and G (dust-ignition-proof) areas or ☏ II 2 G/D Ex db IIIB + H2 .T5 or T4 for gas, Ex tb IIIIC T100°C or T135°C Db for dust. The housings are Type 4X or IP66, dust-tight and watertight. The detectors are approved for both indoor and outdoor installations.

1.2 Standard Features

1.2.1 All Models

- Microprocessor based.
- User adjustable time delays.
- User adjustable latching or non-latching fire relay.
- User adjustable sensitivity.
- User adjustable NO or NC relay outputs.
- LED indication: fire (red) and fault (amber).
- Transient voltage (surge) protection.
- RS-485 addressable user interface.
- Terminal block accepts 22 to 12 AWG wire.

1.2.2 Industrial Model

- 0 to 20 mA output.
- Relay contacts rated at 2 Amps @ 30 VDC (Resistive).
- Operating Temperature: -40°F to 185°F (-40°C to 85°C).
- Storage Temperature: -85°F to 212°F (-65°C to 100°C).

1.2.3 High Temperature Model

- Relay contacts rated at 4 Amps @ 30 VDC (Resistive).
- Operating Temperature: -40°F to 257°F (-40°C to 125°C).
- Storage Temperature: -85°F to 302°F (-65°C to 150°C).

1.3 Optional Features (All Models)

- Stainless Steel Housing (explosion-proof).
1.4 Approval

- FM
- SIL 2
- CSA
- IECEx
- ATEX
- EMC
- LVD

1.5 Fire Detection Performance

1.5.1 All Models

- 50 millisecond response to a saturating signal.
- One second typical to a 1 ft. by 1 ft. gasoline and N-heptane fire at 50 feet.
- Two seconds or less to a 2 ft. x 2 ft. fire of JP-4, JP-8, Jet A, Jet B, AVTUR or AVGAS at 100 feet.
- Three seconds or less to a 10 ft. x 10 ft. fire of JP-4, JP-8, Jet A, Jet B, AVTUR or AVGAS at 250 feet.
- 120 degree horizontal field-of-view (Figure 1).
- 80 degree vertical field-of-view (Figure 2).

1.5.2 Model 3986-1xxxx

- 340 milliseconds or less to a silane flame from a 1.10 inch orifice at 30 feet.
- 2.9 seconds or less to an 8 inch diameter hydrazine fire at 60 feet.
- 3.0 seconds or less to a hydrogen flame from a 0.75 inch diameter orifice with a flow rate of 1.5 SCFM at 35 feet.

1.5.3 Model 3966 High Speed Setting

- 15 milliseconds to a saturating UV source.

NOTE: Detector response times and distances can be influenced by wind, smoke and viewing angle. Consult Sierra Monitor for specific details.
2 THEORY OF OPERATION

2.1 Model 3986 Flame Detectors

The model 3986 flame detectors are multi-spectrum detectors, which provide a high degree of discrimination by sensing widely separated flame emission spectra, both of which are found in hydrocarbon and certain specified non-hydrocarbon fires. Sophisticated signal processing is accomplished by microprocessor technology. Automatic self-testing of the electronics, sensors and optical surfaces is accomplished using light guides. The light guides direct radiant energy by a calibrated internal source lamp to the sensors, whereby it can be determined if the detector’s windows have been contaminated to the point that would render it blind to fires. This self-interrogation is done a minimum of four times per hour, thus providing the ultimate in fire detection reliability.

The two spectral regions selected for sensing fire signals are the Ultraviolet (UV) and Infrared (IR). The UV sensor is the stable, highly reliable UV photon sensor tube which has a peak response centered around 0.22 microns. The design of the tube is optimized for the highest sensitivity to the UV radiation emitted by a flame with the lowest response to background radiation such as near UV, black light, visible light, sunlight and blackbody radiation, thereby providing a very high signal-to-noise ratio.

The IR sensor is responsive to 4.4 microns. This spectral frequency is always present in a hydrocarbon fire due to the excitation of hot carbon dioxide molecules.

Additionally, the option is available in which the IR sensor is responsive to 2.9 microns as well as 4.4 microns. This option enables the detector to sense certain non-hydrocarbon fires. The detector's autonull feature eliminates interference due to background radiation in these regions of the spectrum.

The model 3986 flame detector not only requires the coexistence of UV and IR radiation, but also their presence in specific ratios. The ratio must conform to the radiation pattern of specific fires (Figure 3). The fire event analysis ensures the highest possible discrimination between fire and non-fire sources.

2.2 Model 3966 Flame Detectors

The model 3966 flame detectors are single spectrum detectors utilizing the same ultraviolet sensor tube as described for the model 3986 flame detector.

The model 3966 flame detector requires only that a signal within the detection envelope of the UV sensor will be present in a pre-defined strength for a specified time duration. These parameters are user adjustable and will determine the sensitivity and response time to all fires.

NOTE: Reference Figure 3 for appropriate sensor wavelength regions to be used in Zeta calculation per NFPA 72 edition 2002 or later.
3 APPLICATIONS

The model 3966 and 3986 flame detectors are designed for fire detection applications where sudden fires from hydrocarbon fuels or when proper options are selected, from specified non-hydrocarbon fuels, may occur. These detectors are not recommended for smoldering or electrical fire hazards.

The following is a partial list of fuels which emit ultraviolet and infrared radiation. Response time and detection distances vary. Consult Sierra Monitor for specific details:

The rugged, weatherproof construction and the operating temperature range of the detectors will accommodate a variety of indoor and outdoor applications.

All installations should comply with local fire codes and regulations.

Do not proceed with the installation if you do not understand the installation procedure or operation of the detectors. Sierra Monitor technical support is available to assist you.
4 INSTALLATION

To ensure trouble-free operation and reliable fire protection, follow these installation guidelines:

1. Locate the detector(s) in an area where they will have an unobstructed view of the area to be protected and where extraneous sources of ultraviolet radiation will not affect the performance of the fire detectors. These sources include but are not limited to, nuclear radiation, x-rays, electrical corona, unshielded quartz halogen lamps, and open flame sources such as gas fired heating equipment and process burn off stacks. Prolonged exposure to a continuous source of UV radiation will diminish false alarm discrimination. The detectors must be accessible for cleaning. Failure to maintain clean sensor windows, and self-test optics when so equipped, will impair the performance of the detector. For compliance of an ATEX requirement, ensure that there are no hazards in the area that could provide shocks of energy to the windows greater than 2.0 J.

2. Separate the base from the housing by removing the four M8 X 1.25 cap screws. This will require a 6mm hex key. Store the housing assembly, containing the electronics, in a clean and dry environment while installing the base.

3. Mount the detector base to a previously installed swivel mount or other appropriate support structure so that the detector has an unobstructed view of the area to be protected. Position the base such that the conduit opening faces down. It will be necessary to seal the conduit within 18 inches of the fire detector enclosure. This will insure that water and airborne moisture do not enter the detector housing through the conduit. Provide conduit drains as necessary to prevent moisture from collecting inside the conduit.

4. Determine the critical areas where fires are most likely to occur. Use these areas as focal points for aiming the detectors. The detectors have a conical field-of-vision as shown earlier in Figure 1 and Figure 2. The type of fuel and the size of the fire will determine the range of detection. Aim the detector at a point equal to or below horizontal so that water, dust and dirt will not accumulate on the optical surfaces of the detector. As a general rule, mount the detector so that it will view the base of the area to be protected.

5. Complete the installation by wiring the detector according to the wiring diagram located inside the rear cover. Before assembling the detector housing to the base, verify that the terminal block assembly is plugged in all the way and is located at the top. Insure that the wires are arranged so as not to interfere with the main electronics module. If a torque wrench is available, it is recommended that the four cap screws be tightened to a value of 35 to 40 in-lbs. (3.95 to 4.52 NM).

NOTE: The electronics module contains no re-useable parts. It should never be removed from the housing assembly. This will result in the voiding of the warranty.

6. Use a 20 to 30 VDC regulated and filtered power supply, with a ripple not exceeding 1 percent. The detectors should be protected from induced and transient voltages as well as radio frequency interference (RFI). To ensure compliance to CE requirements, a dedicated conduit is highly recommended for the detector wiring. Connect every detector base to earth ground via an independent wire. In order to meet E N 6100-4:1996 Conducted RF Immunity, 150 KHz-100 MHz, 80% AM 1 KHz Pulse, 10 VRMS requires a Corcom filter 15DCB6F or equivalent connected to power lines.
5 ELECTRONICS

5.1 User Selectable Factory Settings

The electronic module has been factory configured to provide the user with the following:

Time Delay:
- (3966/3986) 3 Seconds (fire)
- (3986) 35 Seconds (Warning)

Sensitivity:
- (3986) Fire Event Analysis Level I, Industrial
- (3966) Level 2, Normal

Relays:
- Fire: Normally Open, Latching.
- Fault: Normally Open, Non-latching (relay is failsafe, it closes upon application of power to detector and will clear after a successful test).

Optical Self-Test: Automatic (only Self-Test Models)

0 to 20 mA:
- (3966-0xxxx/3986-xxxxx) “OFF”

RS-485:
- (3966/3986) “OFF” – HI-Z mode

5.2 User Selectable Interface (USI) Options

Refer to Figure 4 and Figure 7 for locations of User Selectable Interface Options. Figure 5, Figure 6 and Figure 8 provide the user with a quick reference of switch setting options for the various models. The Sections following these figures describes in more detail the function of each switch setting.
Model 3966 & 3986 Flame Detector Modules

<table>
<thead>
<tr>
<th>Flame Detector Settings</th>
<th>DIP Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1 S2 S3 S4 S5 S6 S7 S8 S9</td>
</tr>
<tr>
<td>Automatic & Manual Test Activated</td>
<td>On On NA NA NA NA NA NA NA</td>
</tr>
<tr>
<td>No Test Feature</td>
<td>Off Off NA NA NA NA NA NA NA</td>
</tr>
<tr>
<td>Manual Test Only</td>
<td>On Off NA NA NA NA NA NA NA</td>
</tr>
<tr>
<td>Automatic Test Only</td>
<td>Off On NA NA NA NA NA NA NA</td>
</tr>
<tr>
<td>Industrial Applications</td>
<td>NA NA On NA NA NA NA NA NA</td>
</tr>
<tr>
<td>Aircraft Hangar Applications</td>
<td>NA NA Off NA NA NA NA NA NA</td>
</tr>
<tr>
<td>Fire Event Analysis Level I</td>
<td>NA NA NA On NA NA NA NA NA</td>
</tr>
<tr>
<td>Fire Event Analysis Level II</td>
<td>NA NA NA Off NA NA NA NA NA</td>
</tr>
<tr>
<td>IR/UV Alarm</td>
<td>NA NA NA NA NA On NA NA NA</td>
</tr>
<tr>
<td>No IR/UV Alarm</td>
<td>NA NA NA NA Off NA NA NA NA</td>
</tr>
<tr>
<td>Fire Output Latching</td>
<td>NA NA NA NA NA NA On NA NA</td>
</tr>
<tr>
<td>Fire Output Non-latching</td>
<td>NA NA NA NA NA Off NA NA NA</td>
</tr>
<tr>
<td>0 to 20 mA</td>
<td>NA NA NA NA NA NA On NA NA</td>
</tr>
<tr>
<td>No 0 to 20 mA</td>
<td>NA NA NA NA NA Off NA NA NA</td>
</tr>
<tr>
<td>RS-485 Ui</td>
<td>NA NA NA NA NA NA NA On NA</td>
</tr>
<tr>
<td>No RS-485 Ui</td>
<td>NA NA NA NA NA Off NA NA NA</td>
</tr>
<tr>
<td>Program</td>
<td>NA NA NA NA NA NA NA On NA</td>
</tr>
<tr>
<td>No Program</td>
<td>NA NA NA NA NA NA NA Off NA</td>
</tr>
</tbody>
</table>

*Bold text denotes factory settings; for switch 3 factory default see Section 5.8

<table>
<thead>
<tr>
<th>Flame Detector Settings</th>
<th>DIP Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1 S2 S3 S4 S5 S6 S7 S8 S9</td>
</tr>
<tr>
<td>Automatic & Manual Test Activated</td>
<td>On On NA NA NA NA NA NA NA</td>
</tr>
<tr>
<td>No Test Feature</td>
<td>Off Off NA NA NA NA NA NA NA</td>
</tr>
<tr>
<td>Manual Test Only</td>
<td>On Off NA NA NA NA NA NA NA</td>
</tr>
<tr>
<td>Automatic Test Only</td>
<td>Off On NA NA NA NA NA NA NA</td>
</tr>
<tr>
<td>Sensitivity— Level 1</td>
<td>NA NA Off Off NA NA NA NA NA</td>
</tr>
<tr>
<td>— Level 2</td>
<td>NA NA Off On NA NA NA NA NA</td>
</tr>
<tr>
<td>— Level 3</td>
<td>NA NA On Off NA NA NA NA NA</td>
</tr>
<tr>
<td>— Level 4</td>
<td>NA NA On On NA NA NA NA NA</td>
</tr>
<tr>
<td>Detection Speed — Normal Speed</td>
<td>NA NA NA NA On NA NA NA NA</td>
</tr>
<tr>
<td>— High Speed</td>
<td>NA NA NA NA Off NA NA NA NA</td>
</tr>
<tr>
<td>Fire Output Latching</td>
<td>NA NA NA NA NA Off NA NA NA</td>
</tr>
<tr>
<td>Fire Output Non-latching</td>
<td>NA NA NA NA NA Off NA NA NA</td>
</tr>
<tr>
<td>0 to 20 mA</td>
<td>NA NA NA NA NA NA On NA NA</td>
</tr>
<tr>
<td>No 0 to 20 mA</td>
<td>NA NA NA NA NA Off NA NA NA</td>
</tr>
<tr>
<td>RS-485 Ui</td>
<td>NA NA NA NA NA NA NA On NA</td>
</tr>
<tr>
<td>No RS-485 Ui</td>
<td>NA NA NA NA NA Off NA NA NA</td>
</tr>
<tr>
<td>Program</td>
<td>NA NA NA NA NA NA NA On NA</td>
</tr>
<tr>
<td>No Program</td>
<td>NA NA NA NA NA NA NA Off NA</td>
</tr>
</tbody>
</table>

*Bold text denotes factory settings
Flame Detector Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic & Manual Test Activated</td>
<td>On</td>
<td>On</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>No Test Feature</td>
<td>Off</td>
<td>Off</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Manual Test Only</td>
<td>On</td>
<td>Off</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Automatic Test Only</td>
<td>Off</td>
<td>On</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sensitivity — Level 1</td>
<td>NA</td>
<td>NA</td>
<td>Off</td>
<td>Off</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>— Level 2*</td>
<td>NA</td>
<td>NA</td>
<td>Off</td>
<td>On</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>— Level 3*</td>
<td>NA</td>
<td>NA</td>
<td>On</td>
<td>Off</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>— Level 4*</td>
<td>NA</td>
<td>NA</td>
<td>On</td>
<td>On</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Detection Speed — Normal Speed*</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>On</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>— High Speed</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Off</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Fire Output Latching</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>On</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Fire Output Non-latching</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Off</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>RS-485 UI</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>On</td>
<td>NA</td>
</tr>
<tr>
<td>No RS-485 UI</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Off</td>
<td>NA</td>
</tr>
<tr>
<td>Program</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>On</td>
<td>NA</td>
</tr>
<tr>
<td>No Program</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>On</td>
</tr>
</tbody>
</table>

Bold text denotes factory settings
5.3 Fire Time Delay

Models 3966-0xxxx, 3986-xxxxxx and 3966-1xxxx: The fire outputs can be configured to delay for up to 25 seconds before annunciation of a fire. If the fire were to extinguish anytime prior to the end of the set delay time, the detector would not declare a fire. The factory setting for this delay time is 3 seconds. To adjust the fire delay time, use Potentiometer (Pot) R49. Turning the Pot counterclockwise (CCW) will decrease the time delay. One turn equals approximately 1.25 seconds.

NOTE: If the Model 3966 is using the high speed option, then the maximum delay time setting will be 400 milliseconds. Each turn of the Pot will equal 20 milliseconds.

5.4 UV or IR Warning

Model 3986: Switch position 5 is used to enable the UV or IR Warning Output. If switch position 5 is “ON”, this option is activated. If switch position 5 is “OFF”, this option is not activated. This option will alert the user to the presence of high levels of either UV or IR within the field-of-view of the fire detector.

NOTE: The use of this option will affect the operation of the fault relay only. Refer to the Maintenance and Troubleshooting Chapter (sections labeled “Fault Condition” and “UV or IR Warning”) for additional information on switch position 5.

5.5 UV or IR Time Delay

Model 3986: The UV or IR outputs can be configured to delay for up to 63 seconds before annunciation of one of these emissions. If the UV or IR signal disappeared prior to the end of the set time delay, then the detector would not allow the outputs to toggle “ON”. The factory setting is 35 seconds. To adjust the UV or IR time delay, use Pot R48. Turning the Pot CCW will decrease the time delay. One turn equals approximately five seconds.

NOTE: Always reset power to the detector after adjusting the pots. The detector will not recognize any new setting unless it is reset.

5.6 Sensitivity Levels

Model 3966 (Figure 9): Switch positions 3 and 4 adjust the sensitivity to four different levels. Level 1 being the most sensitive to UV radiation and the most susceptible to false alarms. Level 2 is the factory setting and is recommended for most applications. The following are the logic levels for the two switch positions:

<table>
<thead>
<tr>
<th>Sensitivity Level</th>
<th>Position 3</th>
<th>Position 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Max)</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>2</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>3</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>4 (Min)</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

Figure 9: Model 3966 Sensitivity Settings

5.7 Detection Speed

Model 3966: Switch position 5 is used to select two detection speeds. The normal speed utilizes a slower sampling rate and automatic self-test interval. The high-speed setting increases the data sampling rate and auto self-test frequency. Toggling switch position 5 “ON” activates the normal speed option. Toggling switch position 5 “OFF” activates the high-speed option. The normal speed option is the factory setting and recommended for most applications.
5.8 Industrial or Aircraft Hangar Applications

Model 3986: Switch position 3 is used to select the application setting. If the detector is to be installed in an industrial environment (i.e., fuel loading rack, compressor building, tank farm), switch position 3 should be “ON”. If the application is for an aircraft hangar, switch position 3 should be “OFF”. The false alarm immunity will be slightly diminished from that of the industrial setting.

5.9 Fire Event Analysis Level I or II

Model 3986: Switch position 4 allows the detector to run the Fire Event Analysis (FEA) program of your choice. FEA Level I is for installations with normal UV background levels (i.e., no welding). FEA Level II should be used where detectors are required to detect flames while welding or other UV generating sources are present. Turning switch 4 “ON” selects FEA Level I. Turning switch 4 “OFF” will provide FEA Level II. Level II has slightly diminished false alarm immunity as compared with Level I.

5.10 Relay Adjustments

Models 3966-0xxxx, 3986-xxxxx and 3966-1xxxx: There are two relays and Configuration Option Jumpers, JP1 and JP2, located on the exposed surface of the printed circuit board (PCB) in the housing assembly. Using these jumpers, the relays may be configured as normally open or closed. The factory will ship the detectors with the following settings.

1. **Fire relay (K2) — normally open:**
 - will close when there is a fire present beyond the fire time delay setting.
 - will close when manual test is activated beyond the length of time for the fire delay time setting.

 NOTE: The red, light emitting diode (LED), will be illuminated when relay closes.

2. **Fault relay (K1) - normally open:**
 - will close when power is applied (Model 3986 after 2 seconds and Model 3966 less than a second).
 - will open when power is lost (or fuse F1 on process PCB is open).
 - will open when detector fails automatic test.
 - will open when detector fails manual test.
 - will open when SW7 is on and no loop is present.

 NOTE: The amber LED will be illuminated when relay opens, unless there is a loss of power.

NOTE: Any adjustments to the user options listed above should be done with the power “OFF”. The detectors will not recognize any changes until the microprocessor is reset. Removing the power allows a reset to occur.

CAUTION: Upon applying power, insure that the detector remains on for at least 5 seconds to allow for complete initialization to take place.

5.11 Fire Outputs Latching or Non-Latching

Models 3966 and 3986: Switch position 6 selects the latching or non-latching Fire Outputs option. To select latching, the switch position 6 must be toggled “ON”. Upon detecting a fire, the Fire Outputs signal will remain engaged as long as power remains “ON” or until the detector is reset through the RS485 User Interface (UI). If you select non-latching by toggling switch position 6 to “OFF”, the Fire Outputs signal will disengage after a fire is extinguished.
5.12 Optical Self-Test

Models 3966-xx1xx and 3986-xx1xx: These models have a “through-the-lens” optical clarity-checking feature. The factory setting is for automatic test only, switch position 1 is “OFF”, and switch position 2 is “ON”. (See Figure 5 and 6 for location of the switches and Figures 7, 8 and 9 that describe the switch settings for the user selectable interface.) If the addition of the manual test feature is desired, then toggle the switch position 1 to “ON”. If only the manual test feature is needed, then toggle the switch position 1 “ON” and switch position 2 “OFF”. If no optical testing is preferred, then ensure that both of these switches are “OFF”.

5.13 0 to 20 mA Output

Models 3966-xxxx and 3986-xxxxx: Switch position 7 selects the 0 to 20 mA output option. If this output is utilized, then switch position 7 must be “ON”. Otherwise, if this output is not used, switch position 7 must be kept “OFF” or it will cause the Fault Outputs to turn “ON”. Figure 10 illustrates the order of priority. For the Model 3966-0xxxx, priority 2 and 3 is N/A.

<table>
<thead>
<tr>
<th>Priority</th>
<th>State</th>
<th>Load Current mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fire</td>
<td>20 ± 0.2</td>
</tr>
<tr>
<td>2</td>
<td>Warning UV</td>
<td>16 ± 0.2</td>
</tr>
<tr>
<td>3</td>
<td>Warning IR</td>
<td>15 ± 0.2</td>
</tr>
<tr>
<td>4</td>
<td>Fire Relay Coil Fault</td>
<td>3 ± 0.2</td>
</tr>
<tr>
<td>5</td>
<td>Calibration not complete EEPROM Corrupted Fault</td>
<td>2 ± 0.2</td>
</tr>
<tr>
<td>6</td>
<td>Self-Test Fault</td>
<td>1 ± 0.2</td>
</tr>
<tr>
<td>7</td>
<td>Current Loop Fault</td>
<td>0 ± 0.2</td>
</tr>
<tr>
<td>8</td>
<td>Normal</td>
<td>4 ± 0.2</td>
</tr>
</tbody>
</table>

Figure 10: Milliamp Logic Chart

5.14 RS-485 User Interface (UI)

The Series 3966 and 3986 Flame Detectors are equipped with a two wire, half-duplex, serial communication interface, which is called the “User Interface” (UI). The RS-485 UI will allow up to 31 detectors to be networked to a controller (i.e., customized fire panel or personal computer). The controller will perform the buss arbiter duties, because the network is in half-duplex mode. This means that only one transmitter is allowed on the network at one time.
5.15 Activating the RS-485 Option

On models 3966-0xxxx and 3986-xxxxx, switch position 8 enables this option when it is toggled to the “ON” position. It becomes disabled in the “OFF” position. For model 3966-1xxxx, switch position 7 performs this task. This option provides the user with a half-duplex serial communication network interface for up to 31 detectors. The RS485 UI has two methods for configuring the network. For either method, the unit has to be programmed to a unique detector number from 01 through 31. The detector number will give the Flame Detector an address on the network. For the first method, the RS485 UI option is “ON”. If any alarm state changes, the detector will send out an “Enquiry Interrupt” (EI). The EI is the ASCII character “ENQ”, which is equal to the number 5. Once a fire detector starts to transmit the EI on the network, it will lock out any other detector from sending out the EI. The detector will continue to transmit the EI every second until the buss arbiter has requested a status from it. For the second method, when the RS485 UI option is “OFF”, the detector will be inhibited from sending the EI. The network is still active, but the detectors will only transmit information or perform a function when the buss arbiter interrogates them. For both methods, the detector will wait for a minimum of 16 ms before it will send a response to the buss arbiter. This delay time allows for the buss arbiter to release the network from its transmit mode.

NOTE: To determine the proper configuration of the RS485 UI refer to the firmware revision block on the nameplate, which is a stamped pad located to the right of the model name. The pad will contain a letter character to indicate the firmware revision level.

The detector provides the RS485 UI with a “Status Message”. After a status request is made, the detector will send out for revision “A” a one-byte word that represents the Status Message and starting with revision “B” a six-byte response packet which the fourth byte contains the status message. As shown in Figure 11, the status message has seven alarm bits and one valid transmission bit. When bits 0 through 6 are at logic zero, the alarms are “OFF”. When bits 0 through 6 are at logic one, the alarms are “ON”. Bit 7 is always “ON”. For revision “A”, it allows for error checking during transmission. If a transmission occurs and bit 7 is not set, then the transmission is not valid. Starting with revision “B”, if bits 4 through 7 are set to logic one then the relay coil is open. If bit 3 through 7 are set to logic one then the non-volatile memory has been corrupted.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always On</td>
<td>Manual Test Fault</td>
<td>Auto Test IR Fault</td>
<td>Auto Test UV Fault</td>
<td>Milli-amp Fault</td>
<td>IR Warning</td>
<td>UV Warning</td>
<td>Fire</td>
</tr>
</tbody>
</table>

Figure 11: Message Status for RS-485 UI
5.16 Data Communication RS-485

Starting with revision "B", in order for the bus arbiter to interrogate the network, it must send out a six-byte control packet to the network. The packet formation is comprised of the byte definition shown in Figure 12. The first byte is the protocol start value for the control packet. The second byte represents the detector address high byte which is the tens digit of the detector address. The third byte represents the detector address low byte, which is the ones digit of the detector address. The fourth byte is the secondary command. This is used to control the detector. The fifth byte is a spare and may be used in the future. The last byte is the checksum of the control packet. This is calculated by first summing the previous five bytes. Then taking the total and performing a modulus 256. The result is the checksum.

<table>
<thead>
<tr>
<th>Packet Position</th>
<th>ASCII Byte Value</th>
<th>Byte Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>'K' 75d 4Bh</td>
<td>Protocol Start</td>
</tr>
<tr>
<td>Byte 2</td>
<td>'0' to '3' 48d to 51d 30h to 33h</td>
<td>Det. Addr. Hi-Byte</td>
</tr>
<tr>
<td>Byte 3</td>
<td>'0' to '9' 48d to 57d 30h to 39h</td>
<td>Det. Addr. Lo-Byte</td>
</tr>
<tr>
<td>Byte 4</td>
<td>'0' 48d 30h</td>
<td>No Sec. Command</td>
</tr>
<tr>
<td>Byte 4</td>
<td>'T' 84d 54h</td>
<td>Init. Manual Test</td>
</tr>
<tr>
<td>Byte 4</td>
<td>'R' 82d 52h</td>
<td>Unit Reset</td>
</tr>
<tr>
<td>Byte 5</td>
<td>'0' 48d 30h</td>
<td>Spare</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Checksum=(Sum bytes 1.5) mod 256</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12: Control Packet Definition for RS-485 UI

If the transmission byte packet is recognized as valid, then the detector will recognize the secondary command byte and perform the function. If the "No Secondary Command" is sent, the detector sends a response packet containing the status message. The packet formation consists of the byte definition shown in Figure 13.

<table>
<thead>
<tr>
<th>Packet Position</th>
<th>ASCII Byte Value</th>
<th>Byte Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>'S' 83d 53h</td>
<td>Protocol Start</td>
</tr>
<tr>
<td>Byte 2</td>
<td>'0' to '3' 48d to 51d 30h to 33h</td>
<td>Det. Addr. Hi-Byte</td>
</tr>
<tr>
<td>Byte 3</td>
<td>'0' to '9' 48d to 57d 30h to 39h</td>
<td>Det. Addr. Lo-Byte</td>
</tr>
<tr>
<td>Byte 4</td>
<td>'NA' 128d to 255d 80h to FFh</td>
<td>Status Byte</td>
</tr>
<tr>
<td>Byte 4</td>
<td>'0' 48d 30h</td>
<td>Unit Reset</td>
</tr>
<tr>
<td>Byte 4</td>
<td>'R' 82d 52h</td>
<td>Unit Reset</td>
</tr>
<tr>
<td>Byte 5</td>
<td>'0' 48d 30h</td>
<td>Spare</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Checksum=(Sum bytes 1.5) mod 256</td>
<td></td>
</tr>
</tbody>
</table>

Figure 13: Response Packet Definition for RS-485 UI

To enable the “Manual Test Command”, turn switch 1 to the “ON” position. In turn the detector test lamp is illuminated for a period of time based on the customer selected fire time delay. After the fire alarm is activated, the unit transmits the response packet indicating the fire alarm bit set and terminates the manual test. If a fault occurs, then the detector transmits the response packet indicating the manual test fault bit set and terminates manual test. If the "Unit Reset Command" is provided, the unit sends the response packet indicating the present status of the detector and performs a software reset. An initialization period of 2.3 seconds during which the unit is non-responsive to communication occurs after software resets or initial application of power.

NOTE: All detectors in the network must be programmed to a valid detector address number from 01 through 31. For Revision “A”, during the time that detectors are being polled, they will be removed from fire detection mode. Therefore, this should be done only when necessary and as quickly as possible.
5.17 Programming the Detector Address Number

On Models 3966-xxxx and 3986-yyyy, this option is activated when switch position 9 is toggled “ON”. The option is deactivated when the switch is in the “OFF” position. For Model 3966-1xxxx, switch position 8 performs this task.

This option provides the user with a method of programming the unit number into the non-volatile memory of the microprocessor. To program the detector address number, first remove power from the detector. Then toggle the program option “ON” and set the first five switches on the user selectable interface (USI) to the detector address number.

In program mode, the USI becomes a binary programmer as illustrated in Table 6. When a switch is toggled “ON”, it will equal the binary weighted number. These binary weighted numbers are added together when a multiple number of switches are switched “ON” (i.e., if SW2 and SW3 were closed, then the detector number would equal a 6).

<table>
<thead>
<tr>
<th>SW1</th>
<th>SW2</th>
<th>SW3</th>
<th>SW4</th>
<th>SW5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Figure 14: Binary Weight for Switch States “ON”

When power is applied to the detector, the detector will sense that it is in program mode and read the first five switch positions. From the switch setting, it will determine the detector number. Once the number has been determined, the detector will enter it into the non-volatile memory of the microprocessor. Next, the amber LED will flash “ON” a certain number of times. The number of flashes will be equal to the detector’s address number. Then it will hold the fault relay and amber LED “ON” constantly for about 10 seconds. Then the detector will repeat flashing the detector address number and the delay time. It will continue this mode for up to 5 minutes.

Once you are sure that the proper number is programmed, then shut the power “OFF” and set the USI options to suit your application. Reference the section on the USI if you are not sure which option is best for your application or call Sierra Monitor.

NOTE: In the case that the program option switch is left “ON” and the detector is installed on the network. The detector will go through the same process as explained previously, but after 5 minutes the detector will resume the last USI setting that it had prior to going into the program mode.
Appendix A. Maintenance and Troubleshooting

Model 3966 and 3986 flame detectors are designed for years of trouble-free operation with minimal attention. Periodic cleaning of the optical surfaces is essential, however, for maintaining reliable fire protection. The frequency of required cleaning will be determined by the environmental conditions in and around the installation. The detectors should be regularly inspected for a build-up of dust or other contaminants on the optical surfaces.

The detection specifications presented in this manual are predicated on performance with clean sensor windows. Contaminants such as dust, oil and paint will reduce sensitivity. Severe contamination on the light guides or sensor windows will cause a failure of the auto-test. A detector that fails auto-test due to dirty optical surfaces may be capable of detecting fire, but its effectiveness will be limited from 50 to 70% obscuration.

Appendix A.1. Cleaning Procedure

Locate the following optical surfaces (see Figure 15):

Models 3966-xx1xx
1. UV Sensor Window
2. UV Light Guide End

Models 3986-xx1xx
1. UV Sensor Window
2. UV Light Guide End
3. IR Sensor Window
4. IR Light Guide End

Clean the optical surfaces with a cotton swab wetted with commercial liquid glass cleaner, ammonia, methanol, or isopropyl alcohol. Rinse with clean water and dry with lens quality cloth. Repeat with methanol if needed to remove smudges.

CAUTION: Wiping with excessive force or inappropriate materials may scratch the optical surfaces and impair performance.

Appendix A.2. Troubleshooting

WARNING Do not attempt to repair a detector. Study these troubleshooting guidelines and review the referenced sections of the manual prior to performing maintenance on the fire detection system.
Appendix A.3. New Installations

Starting with Revision E Software, when the detectors are in operational mode, and amber LED will be visible for one second approximately every ten seconds. If any or all the detectors fail to operate, check the system wiring and power supply. Tight, reliable wiring connections are essential, as are low-resistance connections from every detector housing to earth ground. Measure the voltage between terminals 8 and 10 at the detector locations to verify that the supply voltage is within range.

NOTE: Voltage at detectors installed farthest from power source will be lower than the no-load supply voltage due to line losses. Maximum load condition occurs during manual test.

The model 3966 and 3986 flame detectors employ sensitive and sophisticated electronic circuitry in the fire detection process. Power line transients or excessive power supply ripple may therefore cause erratic or intermittent operation. DC-powered detectors function best with ripple-free (less than 1 percent) supply voltage; power supply filtering may be necessary to improve performance.

NOTE: For reliable operation, the instantaneous supply voltage at the input to any detector must not fall below 20 VDC or exceed 30 VDC.

Appendix A.4. Failure to Alarm

Upon detection of fire, the fire outputs will activate and the red LED, visible through the UV sensor window, will turn “ON”.

If during testing, a detector fails to alarm, inspect the sensor windows for cleanliness. Clean sensor windows are essential for effective optical fire detection. Clean all the optical surfaces per the cleaning procedures previously described and retest the detector.

Should the detector continue to be inoperative, check the supply voltage and all associated wiring. Incorrect power supply voltage or loose connections will cause marginal or intermittent performance.

Appendix A.5. RS-485 User Interface (UI)

If no communication has been established, check the wiring to be sure that the polarity is not reversed on the two wires. The network can be daisy chained, but it does require two 120Ω terminating resistors in order to minimize reflections. One resistor should be placed at the controller or buss arbiter. The other resistor should be placed at the farthest location from the controller or buss arbiter. RS485 allows up to 4000 feet of 24 AWG twisted-pair wire driving into 120Ω loads.
Appendix B. Specifications

Appendix B.1. Environmental (All Models)

Suitable for Use in Hazardous Locations: Class I, Division 1, Groups B, C & D
Class II, Division 1, Groups E, F & G
Type 4X rated

European Rating:
- Ex db IIB + H, T5 Gb for gas (Industrial)
- Ex tb IIIC T100°C Db IP66 for dust
- Ex db IIB + H, T4 Gb for gas (High-Temp)
- Ex tb IIIC T135°C Db IP66 for dust

Appendix B.2. Electrical Interface

Nominal Voltage Input: 24 VDC (20 Min/30 Max)

Maximum Allowable Ripple Voltage: 240 mV

Maximum Current Draw (@ 24VDC):

<table>
<thead>
<tr>
<th>Model</th>
<th>Standby</th>
<th>Alarm</th>
<th>Manual Test</th>
<th>Auto Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>3986/3966-xx1xx</td>
<td>90 mA</td>
<td>110 mA</td>
<td>250 mA</td>
<td>250 mA</td>
</tr>
</tbody>
</table>

Figure 16: Maximum Current Draw

3986/3966 Industrial Models –
Relay Contact Rating: 2 Amps @ 30 VDC (Resistive)

3966 High Temp. Model –
Relay Contact Rating: 4 Amps @ 30 VDC (Resistive)

NOTE: Each detector contains two relays – (1) Fire, (1) Fault

Current Loop Output (0 to 20 mA): Industrial Temp. Models only (see *Figure 10*)

RS-485 Half-duplex, Addressable, User Interface Baud Rate 9600 bits per second, 1 start bit, 8 data bits and 1 stop bit.

Maximum Power Consumption (@ 24 VDC):

<table>
<thead>
<tr>
<th>Model</th>
<th>Standby</th>
<th>Alarm</th>
<th>Manual Test</th>
<th>Auto Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>3986/3966-xx1xx</td>
<td>2.16 W</td>
<td>2.64 W</td>
<td>6 W</td>
<td>6 W</td>
</tr>
</tbody>
</table>

Figure 17: Maximum Power Consumption
Appendix B.3. Mechanical Specification

Depth: 6.0 inches [153 mm]
Height: 4.5 inches [114 mm]
Width: 5.5 inches [140 mm]

Weights: (installed)
- Aluminum Housing: 5 lbs (2.4 kg)
- Stainless Steel: 13 lbs (6.3 kg)

Shipping Weight:
- Aluminum Housing: 6 lbs (2.8 kg)
- Stainless Steel: 14 lbs (6.7 kg)

(Figure 18 Shows Nominal Dimensions)

Appendix B.4. Optional Accessories

- 3900-01 SS Tilt Mount for Aluminum Enclosures
- 3900-02 SS Tilt Mount for Stainless Steel Enclosures
- 3900-04 Air Shield Model # 3966 and # 3986
- 3900-05 SS Sun Shade/Rain Guard
- 3900-06 UV/IR Tester for # 3986
- 3900-07 Universal Tester Multi IR & UV/IR #3966, 3976, 3986
- 3900-08 Battery Pack for Tester # 3900-06 & # 3900-07
- 3900-09 Charger for Tester # 3900-06 & # 3900-07
- 3900-10 UV Tester Only Model # 3966, CSA, US Voltage
- 3900-11 UV Tester Only Model # 3966, CE, Euro Voltage
- 3900-12 Battery Pack for Tester # 3900-10 & # 3900-11
- 3900-13 Air Shield, High Temp Model # 3966
- 3900-14 2" Pole Mount Kit for # 3900-01 Bracket
- 3900-15 2" Pole Mount Kit for # 3900-02 Bracket

Figure 18: 3966/3986 Mechanical Dimensions

Figure 19: Swivel Mount Installation
Appendix B.5. Ordering Information

The following part number is essential in the selection of the correct product. Please build up the desired part by inserting the code for each element into the appropriate space (i.e. 3966-0-1-0-0-0).

To order Model 3966, please specify:

<table>
<thead>
<tr>
<th>Model</th>
<th>Fire Type</th>
<th>Enclosure</th>
<th>Test Feature</th>
<th>Fire Relay Configuration</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>3966</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- 0 = Industrial Temp. Fire Detector
- 1 = High Temp. Fire Detector
- 0 = Aluminum, ¾-14NPT (white)
- 2 = Stainless Steel, ¾-14 NPT
- 3 = Aluminum, M20-1.5 (white)
- 5 = Stainless Steel, M20-1.5
- 1 = Auto Self-Test
- 0 = Latching
- 0 = FM, CSA, IECEx, ATEX, EMC, LVD, SIL2

To order Model 3986, please specify:

<table>
<thead>
<tr>
<th>Model</th>
<th>Fire Type</th>
<th>Enclosure</th>
<th>Test Feature</th>
<th>Fire Relay Configuration</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>3986</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- 0 = Hydrocarbon
- 1 = Hydrocarbon & Non-Hydrocarbon
- 0 = Aluminum, ¾-14NPT (white)
- 2 = Stainless Steel, ¾-14 NPT
- 3 = Aluminum, M20-1.5 (white)
- 5 = Stainless Steel, M20-1.5
- 1 = Auto Self-Test
- 0 = Latching
- 0 = FM, CSA, IECEx, ATEX, EMC, LVD, SIL2

Customer Wiring Interface

1. **Power Supply**
 - Input
 - Output

2. **RESET SWITCH** (Momentary & N.C.)
3. **FIRE LOOP**
4. **FAULT**
5. **JP1** (NO) (NC)
6. **JP2** (NO) (NC)
7. **CHASSIS RTN**
8. **24 VDC**
9. **-24 VDC RTN**
10. **TEST INPUT**
11. **+ RS485**
12. **- RS485**
13. **TEST SWITCH** (Momentary & NO)
14. **RS485 LOOP 120 Ohms**
15. **RL 250 Ohms Max**

Electronic Module Interface

Notes:
1. The Model 3966-1XXX does not have a 0 to 20mA option. TB1-1 is N/A.
2. RS485 120 Ohm resistor is terminating. Only use one at the beginning of the loop and at the very end.
3. Fault relay contacts change state on application of power.
4. Earth Ground should be attached to clamp in the base.
Appendix C. Service and Repair

Contact Sierra Monitor or your Sierra Monitor distributor for details on our customer support and repair services. Prior to returning defective material, please contact the Sierra Monitor service and repair department for additional procedural information.

Model 3966 and 3986 flame detectors are not field-serviceable and the flameproof joints are not intended to be repaired. An unauthorized attempt to repair or re-calibrate a detector will void the warranty.

Detectors should be carefully packed to avoid damage from shock, moisture and dust. Use the original shipping carton, if available. Wrap the detector in plastic before packing. Provide ample packing material to cushion the detector.

Appendix D. Warranty

The warranty period is thirty-six (36) months for the model 3966 and 3986 flame detectors and five (5) years for both the UV and IR Sensors.

Sierra Monitor will, at its option, repair and return without charge (freight prepaid) any Sierra Monitor product, used in accordance with Sierra Monitor ratings and instructions and confirmed by Sierra Monitor to be defective in workmanship or materials. This warranty shall be valid only if the product is returned, within the applicable warranty period, properly packed and with all transportation charges prepaid. All warranty periods commence from the date the product is shipped to the end user, provided that delivery is within six (6) months of the date the product was originally shipped from the factory. There are no warranties of merchantability, fitness, or implied warranties of any kind, or representations for any other Sierra Monitor product, except the warranty specified herein. In no event shall Sierra Monitor be liable for any consequential, special or other damages attributable to our product. The buyer is solely responsible for the proper installation, maintenance and use of the Sierra Monitor flame detectors, and agrees Sierra Monitor is not in any way liable for any special incidental or consequential damages whatsoever.